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The stability of two-phase flow over a swept wing 
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(Received 19 October 1994 and in revised form 4 December 1995) 

We use numerical and asymptotic techniques to study the stability of a two-phase 
air/water flow above a flat porous plate. This flow is a model of the boundary layer 
which forms on a yawed cylinder and can be used as a useful approximation to the 
air flow over swept wings. The air and water form an immiscible interface which can 
destabilize the flow, leading to travelling wave disturbances which move along the 
attachment line. This instability occurs for lower Reynolds numbers than is the case 
in the absence of a water layer. The two-fluid flow can be used as a crude model of 
the effect of heavy rain on the leading edge of a swept wing. 

We also investigate the instability of inviscid stationary modes. We calculate the 
effective wavenumber and orientation of the stationary disturbance when the fluids 
have identical physical properties. Using perturbation methods we obtain corrections 
due to a small stratification in viscosity, thus quantifying the interfacial effects. Our 
analytical results are in agreement with the numerical solution which we obtain for 
arbitrary fluid properties. 

1. Introduction 
The laminar flow over an infinitely long cylinder can become unstable as the 

Reynolds number increases. When the axis of the cylinder is inclined at an angle rel- 
ative to the free stream, the developed three-dimensional mean flow can be separated 
into two components, one lying in a plane normal to the axis, the other parallel to 
the generators of the cylinder. Small-amplitude disturbances to the flow can take the 
form of Tollmien-Schlichting waves, crossflow vortices, or Taylor-Gortler vortices (if 
there are regions of concave curvature). 

The flow over a swept cylinder has been studied in detail, primarily because of its 
important application and relevance to the boundary layer which forms on the surface 
of swept wing. Understanding the mechanisms of flow instability for this model can 
lead to significant development of methods used in the reduction of laminar to 
turbulent flow transition. 

The flow we study in this paper, is a classical Heimenz stagnation-point flow, 
together with a superposed non-zero component of velocity parallel to the axis. 
The equations governing the flow are written in Cartesian coordinates (see Prandtl 
1946). The velocity component parallel to the axis of the cylinder can be determined 
independently by decoupling the momentum equations. The relevance of this solution 
to the realistic flow which forms on a swept wing is discussed in $3.2. 

Using linear stability theory, Hall, Malik & Poll (1984) calculated critical Reynolds 
numbers for an infinite swept attachment-line boundary layer. They examined the 
effects of both suction and blowing at the boundary. Surface suction can be used as 
an effective laminar flow control since it thins the viscous boundary layer and leads 
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to a reduction in the local Reynolds number. In addition, the vorticity distribution 
is modified so that a more stable flow is established. Hall et al. obtained numerical 
and asymptotic results which clearly illustrate that even a small amount of suction 
can significantly stabilize the flow. Their results are in excellent agreement with 
the experimental investigations of Gaster (1967), Pfenninger & Bacon (1969) and 
Poll (1979, 1980). These authors investigated the stability of the attachment lines 
on swept wings and swept cylinders to small disturbances of naturally occurring 
frequences. 

In 1986, Hall & Malik (1986) extended their linear stability results to include the 
nonlinear regime. The weakly nonlinear stability of this flow was examined using 
a Stuart-Watson expansion procedure. The primary motivation was to explain why 
experimental observations all correspond to modes near the lower branch of the 
neutral curve. Hall & Malik showed that apart from a small region near the critical 
Reynolds number, finite-amplitude solutions bifurcate from the upper branch when 
the Reynolds number is below the neutrally stable value elucidated from a linear 
stability analysis (subcritical). Equilibrium states associated with the upper branch 
are not therefore observed experimentally, since these solutions are unstable. 

In addition these authors used numerical methods to integrate the time-dependent 
Navier-Stokes equations which govern the fully nonlinear problem. Using a Fourier- 
Chebyshev spectral method Hall & Malik found the existence of supercritical finite- 
amplitude states near the lower branch of the neutral curve. 

Recently there has been much interest in the aerodynamic penalties associated with 
adverse weather conditions on aircraft flight. In a review of recent studies into the 
effects of heavy rain during take-off and landing, Dunham, Dunham & Bezos (1991) 
showed that short-duration, heavy precipitation can result in a premature loss of lift 
of 15-20 Yo and an increase in drag coefficient of up to 20%. It should be noted that 
these experiments were performed on two-dimensional airfoils for which there is no 
attachment line or crossflow instability. 

The exact mechanisms which cause these detrimental flight characteristics are not 
clearly understood. Certainly the increased load on the wing will affect performance, 
but it is thought that other contributory mechanisms may also be active. One possible 
explanation is that when a thin water layer resides on the wing surface, the interface 
between the water and air layers may alter the stability of the flow. This interfacial 
mode could only play a role if a finite volume of water resides at the boundary. 
Clearly this could only occur during low-speed, low-altitude flight conditions, such as 
take-off or landing. With larger free-stream air flow the water layer would be forced 
out of the boundary layer, drying the surface of the wing. At higher altitudes, above 
dense cloud, rain is not a factor. 

Interfacial instability arises in flows of two immiscible fluids which have differing 
fluid properties. In particular a viscosity jump across the fluid-fluid interface leads to 
a discontinuity in the velocity gradients due to continuity of tangential stress. Even 
flows which are stable to infinitely small disturbances (e.g. below the critical Reynolds 
number), can be destabilized by this mechanism, although the growth rate of the 
interfacial mode becomes asymptotically small as Reynolds number decreases. 

Yih ( 1967) obtained asymptotic expressions for the growth rate of small-amplitude, 
long-wavelength perturbations to plane Couette and plane Poiseuille two-layer flow. 
When the fluid properties are identical, the interfacial mode is passive and, for plane 
Couette flow, these disturbances are linearly stable at all Reynolds numbers. For 
two fluids of different viscosities and/or densities interfacial instability is possible. 
The growth or decay of this mode depends on the many physical parameters and 
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geometry of the problem and incorporates surface tension forces, gravity, and volume 
ratios for example. 

Since Yih’s work, there have been numerous investigations of interfacial instability 
which have important applications in many situations. For example, Blennerhassett 
(1980) showed that the interfacial instability of air flow over water can lead to the 
generation of finite-amplitude waves. The effects of surface tension and gravity have 
been quantified in a variety of numerical and analytical studies which consider short-, 
moderate- and long-wavelength perturbations to the basic state (see Hooper & Boyd 
1983, 1987; Hooper 1985 and Renardy 1985). The books by Joseph & Renardy 
(1993) give a comprehensive account of the many recent theoretical and experimental 
investigations of interfacial instabilities. 

In this paper we consider a two-fluid analogue of the attachment-line boundary 
layer. We obtain an exact solution of the Navier-Stokes equations which govern 
the viscous two-phase flow. The domain consists of two separate regions. In the 
upper region of the boundary layer we have a two-dimensional stagnation-point flow 
together with a superposed crossflow component (due to the angle of inclination to 
the free stream). Below the air is a layer of water which, in the exact solution, forms 
an immiscible interface parallel to the boundary. In order to conduct an investigation 
of the interfacial mode we must assume that a constant depth of water lies in the 
lower layer. This restricts our attention to scenarios in which the drying effect of 
the air is balanced by the rate at which water enters the domain. This mechanism 
allows us to (crudely) consider the effect of heavy rain which is modelled by a flux of 
water being drawn into the lower layer. In 92 we obtain exact solutions for the base 
state. We note that in the absence of surface suction or blowing, a constant non-zero 
depth of water cannot be sustained. Thus we only consider flows in which the normal 
component of the velocity at the surface is non-zero. 

In 93 we investigate the linear temporal stability of the flow to disturbances when 
the Reynolds number is finite. Since the basic flow is an exact solution of the 
Navier-Stokes equations, we are able to calculate the critical Reynolds numbers for 
a disturbance of arbitrary wavelength. By varying the viscosity and density ratios 
of the two fluids, we determine the stabilizing/destabilizing effect of the interfacial 
mode. We find that for both wall blowing and suction, the interface significantly 
destabilizes the flow. More precisely, we show that the flow is susceptible to travelling 
wave disturbances at lower Reynolds numbers than is the case for flow in the absence 
of a water layer. 

The inviscid stability of a three-dimensional boundary layer was first compre- 
hensively studied by Gregory, Stuart & Walker (1953). These authors used both 
experimental and theoretical techniques to develop an extensive understanding of the 
stability of the flow which forms on a rotating disk, and their findings have important 
consequences for the stability of general three-dimensional boundary layers. 

The experimental work of Gregory et al. (1953) was based on the china-clay 
evaporation technique. They observed a regularly spaced pattern of equiangular 
spiral vortices which remain stationary, relative to the rotating disk. The angle made 
between these vortices and the radius vector of the disk was found to be in excellent 
agreement with the inviscid theory developed by Stuart. The prediction for the 
number of vortices was not, however, in such close agreement with the experimental 
observations. This discrepancy was attributed to viscous effects, and was resolved 
later when Hall (1986) used a self-consistent asymptotic theory to study the problem. 
Hall extended the inviscid analysis of Gregory et al. taking into account non-parallel 
flow effects. His results were consistent with those obtained by the parallel-flow 
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numerical investigation of Malik (1986), although this approximation is not valid 
at finite Reynolds numbers. In this work, Malik obtained a neutral curve for these 
stationary disturbances, and he also found a second stationary mode of instability 
which had been discovered experimentally by Federov et al. (1976). 

In $4 we consider the inviscid stationary modes of instability of the flow described 
in $2. Using numerical methods we calculate the eigenvalues and eigenfunctions when 
the fluid properties are equated. We then compare these with our calculations for 
air flow over a water layer. In addition, we use asymptotic techniques for the case 
when the fluids have similar viscosities. This gives a useful method for quantifying 
the onset of the interfacial instability. We find that stationary modes are susceptible 
to interfacial effects due to a discontinuity in the shear stress at the unperturbed 
interface position. In 95 we draw some conclusions. 

2. Formulation of the basic state 
We consider the three-dimensional flow of two viscous, incompressible fluids above 

an infinite, horizontal, porous flat plate. The two fluids are immiscible and occupy 
separate regions. The upper-fluid velocity is denoted by U ;  and the lower-fluid 
velocity by U;. We use Cartesian coordinates, with the (x*,z*)-axes lying in a plane 
parallel to the plate which is positioned at a vertical height y' = -d. The porous 
plate allows us to model either the case of wall blowing, where there is a flux of fluid 
into the lower region, or wall suction where the normal velocity at the plate is in the 
-y* direction. The streamlines in the (x*,y")-plane extend to infinity, the volume of 
fluid in each layer is then assumed to be constant and the interface between the two 
fluids is located at a height y' = 6q' ( z* ,  t') where q* is an unknown function, and 6 
is constant. 

The upper and lower fluids have viscosities p1,p2 and densities p1 and p2 respec- 
tively, so that the kinematic viscosities are v1 (= p 1 / p I )  and v2 (= p2/p2). We define 
the fluid velocity and pressure to be 

Uj42  = [X'Ujt (y',z", t') , v; (y8,z', t') , w; (y*,z', t " ) ]  , 
PJ*=1,2 = PJ* (y*,z*, t ') , 

and the Navier-Stokes equations are 

a Uj' a U* au* 1 ap: 
~ + u;?+ v*-L + w*J  +-- ' =vjv2u;, 
at* J ay* J aZ* x*pj ax* 

av* ap: + w * L  + J = viv2v'*, 
a V; a v: 

~ + v * L  
at* J a y e  J aZ. pjay* 

a w; aw: ap: + w * L  + J = vjv2w;, 
a w; 

~ + v*- 
at* J ay* J aZ* pjaz* 

dV'? awg 
u;+-+--1=0. 

a y e  aZ* 
The Laplacian is defined as 

and the subscript denotes the upper and lower fluids 
the velocity and pressure fields (1) and (2) corresponds 

( 3 4  

respectively. The form of 
to an exact solution of the 
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momentum equations (3a-d), hence it is not necessary to make the boundary-layer 
approximation when deriving the basic flow, and in the subsequent analysis. 

The tangential velocity of the lower fluid satisfies the no-slip boundary condition 
(x' U;, W.) (y* = -d) = (0,O). The velocity perpendicular to the plate is prescribed 
by V .  (y*  = -d)  = Vo, where Vo > 0 corresponds to blowing, and Vo < 0 represents 
suction at the wall. 

The conditions far from the plate are given by 

UO w; + wo as y + m  u; --+ I' 
Define A = (p11/Uopl)1'2, 1 is a length scale in the streamwize direction and the 
velocity scale is WO, so that 

(X',Y*,Z') = A ( X ,  Y , Z ) ,  

(X'U',  v*, w*) = wo ( X U ,  V ,  W ) .  

Time t', and pressure Py=l are made dimensionless by A /  WO and p1 W i  respectively. 
We also define the following non-dimensional parameters : 

v 2  P2 P2 d v1 
ti=-> D = -  m = -  WOAPl &=-, P = - >  v = - - .  

A'  Pl' P1 
VO& 
WO P1 

R, is the Reynolds number, ti is the dimensionless normal velocity at the wall, and D 
is the depth of the lower fluid, scaled with respect to the length A .  The parameters m, 
p and v are the viscosity, density and kinematic viscosity ratios respectively. 

At the interface between the upper and lower fluid layers, both velocity and 
tangential stress are continuous. The normal stress exhibits a discontinuous jump due 
to the effect of surface tension D. Using the notation 

[ ( . ) j l :  E ('12 - ('11 > 

we obtain the following conditions which are applied at the non-dimensional interface 
position Y = S q :  

jzPj6g(?&!%)+Pj(l-(6g)2) ($+g)]2=0, 1 

where J = o/pl Wid is the non-dimensional surface tension coefficient. In addition, 
we must satisfy the kinematic condition 
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Let us now regard the flow in each region as a small perturbation of the basic state, 
so that with 6 << 1, 

and the pressure is written in the form 

Note that since 6 << 1, the unperturbed interface position is Y = 0. We substitute 
this flow into the Navier-Stokes equations (3a-d), and take the limit 6 -+ 0 to yield 
the following system of equations which determine the basic state : 

The boundary and interface conditions become 
- 

v2 ( -D)  = w2 (4) = 0, v2 (4) = Ic, (8) 
w1 (a) = 1, (9) u1 (m) = 1, 
w2 (0) = K ( 0 )  , (10) u2 (0) = Ul(0) > 

v 2  (0) = 0, Vl (0 )  = 0, (11)  

m u ;  (0) = u’l (O),  m w ;  (0) = wl, (O),  (12) 

- - 

- - 

- - 

where ( . ) r  denotes differentiation with respect to the normal coordinate Y .  
Before finding a solution to the above equations, we firstly analyse the behaviour 

of the basic flow as Y + co. For large Y ,  the asymptotic form for vl and w1 can be 
expressed as 

- 

v1 = -5 + rox, x << 1, 

+.. .  3 (13c) 
1 3 15 (-l)n (2n - 1) (2n - 3). . .3.1 + 52n+l 

z= - -+ - - -+ . . .  
t3 t5 

where 5 = Y + z , x = ~ ( 5 )  and z, TO are constants (see Rosenhead 1963, Chapters 
V and VIII). After substitution into equations (6)-(7) we integrate with respect to Y 
to obtain the following asymptotic form for x as Y -+ a: 

x = ; [ X I r  + t i ]  3 

+ c + t2c exp (--it2) 1 
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Density Viscosity Kinematic viscosity 
(g crnp3) (g cm-' s-') (cm2 s-l) 

Air 1.225 x lop3 1.776 x 1.450 x lo-' 
Water 9.991 x lo-' 1.137 x 1.138 x lop2 

TABLE 1. Physical properties of air and water. 

Water/Air 8.156 x lo2 6.402 x 10' 7.848 x 

0.8 

0.4 

0 21 -4 -2 0 2 4 

-4 -2 0 2 4 -4 -2 0 2 4 

-4 -2 0 2 4 
Y 

-4 -2 0 2 4 
Y 

FIGURE 1. Basic flow of air over water: velocity profiles with (a )  wall blowing and ( b )  wall suction, 
and water depth D = 0.5,1.2,3,4. 

Having derived expressions (13a-c) above, we obtain numerical values for the basic 
flow using a fourth-order Runge-Kutta scheme to integrate equations (6)-(7) with 
respect to Y ,  from Y, to -D, where Y, is an arbitrarily large number. Initial values 
for z and TO were chosen, and then improved in order to satisfy the no-slip conditions 
(8) at the wall, and the kinematic condition (11) to within a specified tolerance. 
For the case of a single fluid (rn = 1 = p )  a step length of 1.0 x gave excellent 
agreement with the results published in Rosenhead (1963, p. 232). To model the flow 
of air over water we obtain a solution of the system governing the basic state using 
the viscosity and density ratios shown in table 1 (see Batchelor 1967). The basic 
flow profiles U,  7 and W are illustrated in figures l(a) and l(b) for blowing and 
suction respectively. Each figure shows the velocity components with depth of water 
D = 0.5,1,2,3 and 4. 

Given a constant depth of water D ,  we calculate the corresponding blowing or 
suction IC at the porous plate; the results are illustrated in figure 2(a). For the case 
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i 
-0.31 ' '  I ' '  ' '  ' '  1 

0 4 8 12 16 20 

Depth of lower fluid, D 
-400 -200 0 200 400 

X 

-400 -200 0 200 400 

X 
FIGURE 2. Basic flow of air over water: (a) water depth D and corresponding blowing/suction IC; 

(b)  streamlines with wall blowing; (c )  streamlines with wall suction. 

K > 0 (wall blowing), we see that the velocity at the plate increases almost linearly 
with depth of lower fluid D. With suction at the wall, the relationship is more involved. 

In figure 2(a) we clearly see that when K = 0 we obtain the somewhat degenerate 
solution with D = 0. This corresponds to the stagnation-point flow of air in the 
absence of a water layer below. An exact solution of the Navier-Stokes equations 
for a two-layer flow is is not possible if K = 0. Equation (7), solved subject to 
homogeneous boundary/interface conditions (with K = 0) yields the trivial solution in 
the lower layer. In the absence of suction or blowing, water is no longer drawn into the 
lower layer and the model breaks down. Physically this corresponds an aeronautical 
application where there is no mechanism drawing water into the boundary layer and 
the motion of the air drys the leading edge of the wing. As discussed previously, this 
restricts the validity of our model to applications of low-speed, low-altitude flight, for 
example during take-off or landing. For this reason, we only consider base flows for 
which the normal component of the velocity at the plate is non-zero. 

Before we examine the flow stability, we first discuss the basic flow properties. The 
way in which a constant depth of lower fluid is maintained may not be immediately 
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obvious, especially in the case of wall suction. This is made clear by an analysis of 
the streamlines. By integrating XUl and XU2 with respect to the normal coordinate 
Y we obtain figures 2(b) and 2(c) which show the streamlines at a particular location 
along the spanwize direction. We have chosen representative examples: ti = 0.04, 
D = 2.0; and ti = -0.12, D = 1.0. With a positive normal velocity at the plate, fluid 
enters the lower layer and moves towards a stagnation point at X = 0 = Y.  The 
flow in the upper layer is directed towards the plate, in the -Y-direction. This is a 
classical Heimenz stagnation-point boundary-layer solution together with an imposed 
crossflow w acting in the spanwize direction. 

For the case of suction, two stagnation points occur. There is a region above the 
interface (positioned at Y = 0), where Vl > 0 and Ul < 0 as shown by the velocity 
profiles in figures l ( a )  and l(b).  The depth of this region increases with the suction, 
so that with a depth D = 1.61 and ti = -0.1022 (suction is a minimum here) the 
two stagnation points almost coincide. For 0 > Y > -D the flow is towards the 
porous plate where the tangential velocity satisfies the no-slip condition. At Y = 0 the 
kinematic condition (11) is imposed to prevent the transfer of fluid particles across 
the unperturbed interface (since the fluids are immiscible). The tangential velocity 
is continuous here although the gradient is discontinuous due to the viscosity ratio 
m # 1 (namely equation (12)). 

The relationship between ti and D shown in figure 2(a) can be analysed as follows. 
For ti >> 1 and Y - 0 ( 1 )  equations (6)-(7) yield solutions 

Imposing the kinematic condition V2 ( Y  = 0) = 0 yields 

D = (2~) ’”  IC N 40.4~, 

which is in excellent agreement with the numerical values presented in figure 2(a). 
For wall suction, the limit ti + -a corresponds to the singularity in the depth 

D. As IC + -00, we see that D << 1, and momentum conservation in the spanwize 
direction suggests the use of the scaled variable 

so that for [ - 0 ( 1 )  

We now investigate the stability of the basic flow calculated above. We consider 
two distinct cases of physical interest: in $3 we look at the temporal stability of 
the flow when the Reynolds number is finite; in $4 we investigate inviscid stationary 
modes at high Reynolds numbers. 
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3. Viscous modes 
The aim of this work is to quantify the effect of the interfacial viscosity and density 

stratification upon the stability of the basic flow when viscous effects are included. 
For a single fluid, linear and nonlinear stability analyses have shown that unstable 
disturbances propagate along the attachment line. The three-dimensional basic flow 
is independent of the spanwize coordinate Z (and is therefore an entirely parallel 
flow). Hence we employ periodic boundary conditions (in that direction) on the flow 
disturbances. Such methods cannot of course be used for flows which are spatially 
growing (non-parallel) such as the Blasius boundary layer which forms on a flat plate. 

The flow described in the previous section is a first approximation to the boundary 
layer which forms on a swept wing, and is used to gain an understanding of the 
instability mechanisms which lead to transition from laminar to turbulent flow. To 
this end, we consider a convective instability in which disturbances propagate away 
from their source. For a discussion of absolute and convective instabilities the reader 
is referred to the review paper by Heurre & Monkewitz (1990). Following the work 
by Hall et aE. (1984), we consider the temporal development of small-amplitude 
perturbations having a normal mode expansion 

A. K Coward and P. Hall 

These perturbations are spatially periodic with wavelength 2n/k and with speed c. 
The system of equations which govern the linearized stability problem is given 

by substituting equations ( 5 )  and (14) into the Navier-Stokes equations (3) and 
associated boundary/interface conditions and then discarding terms which are o (6). 
We obtain 

where 

L: (-) = (.)” - k2 (.) - ik& (W1 - c) (.), 

Li (.) v (.)” - vk2 (.) - ik& (W2 - C) (.). 

The velocity perturbation to the lower fluid satisfies the no-slip condition at the 
plate, and the conditions at the interface are obtained by expanding the velocity and 
stress components as Taylor expansions about the unperturbed interface position 
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Y = o :  

The kinematic condition 

The upper fluid velocity 

- k2qJ. 

(4) becomes 

v =  Re v1 
ik& (W1 -c) -7;. 

U1 must match the undisturbed flow as we move far away 
from the plate; we therefore require the perturbed flow to decay exponentially as 
Y becomes large. Hall et al. (1984) showed that by replacing the basic flow by its 
asymptotic dependence for Y >> 1 (equation (13)), the perturbed velocity in the upper 
fluid has the form 

as Y --+ 00. 
u1 - W I  - exp (-y2/2) 
Vl - exp(-kY) 

Equations (15a-h) govern the stability of the lower fluid and are defined on the 
domain -D < Y < 6q,  whilst those for the upper fluid are defined for 6 q  < Y < co. 
These equations in general require a numerical solution. 

For a given Reynolds number &, and real wavenumber k, we obtain the corre- 
sponding complex eigenvalue c. The imaginary part, denoted ci, determines kci, the 
linear temporal growth or decay of the perturbation to the basic state. When ci > 0 
the flow is said to be linearly unstable and for ci < 0 it is linearly stable. 

3.1. Numerical solution 

Solving the stability problem by means of a standard shooting method becomes 
prohibitively expensive as the Reynolds number increases. The rapidly varying nature 
of the eigenfunctions results in a loss of independence of orthogonal solutions due 
to the introduction of a 'parasitic' error at each integration step. High accuracy can 
only be guaranteed if the step length is made vanishingly small. These difficulties 
were overcome by implementing a compact fourth-order finite difference scheme of 
the form developed by Malik, Chuang & Hussaini (1982). This method was later used 
by Hall et al. (1984) to investigate the attachment-line stability of a single fluid; a 
detailed account of the implementation of this scheme is given by these authors. The 
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method is applicable to a set of linear first-order ordinary differential equations with 
an equal number of boundary conditions prescribed at each end of the domain. Our 
solution strategy is as follows: the equations describing the stability problem above 
have been formulated as two sixth-order ordinary differential systems with coupled 
interface conditions. We define two column vectors 

T T 
y)j=1,2 = (4lj, 4 2 j 2  $3j, $4j, 4 5 j ,  4 6 j )  = (uj, vj, wj, pj, ui, wj) 9 

where, as before, the subscript j = 1,2 denotes the upper and lower fluids respectively, 
and T denotes the transpose of the vector. The equations can now be formulated as 
twelve first-order linear differential equations such that 

1 = 1,2 ,... 6,  j =  1,2, 

6 
darn 
dY bl, = - + C U l p U p n .  

p=l 

Defining f i  = k'mp-' + ik(W2 - c)&, we find that the 6 x 6 matrix (a& has the 
following non-zero elements: 

The nodes are distributed so that in the upper fluid 

y, + L1 
y, ' 

gl = 

where N + 1 is the total number of nodes, Y, is the edge of the boundary layer, and 
the scaling parameter chosen such that W1 (L1/2) = 0.5. Malik et al. (1982) showed 
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that such a choice of L1 yielded maximum accuracy. Similarly in the lower fluid 
layer 

D+L2  
g2 = ~ D '  

Y, = L2 (n - 1) n = l , 2  ,..., M + 1 ,  
Mg2 - (n - 1)' 

such that w2 (L2/2) = ~ / 2 .  
For both the upper and lower fluids, equation (19) becomes 

which may be written in block-tridiagonal form so that the solution across each fluid 
layer is obtained efficiently. To this end, we introduce independent inhomogeneous 
velocity components at the interface, and equation (16) gives the corresponding 
interfacial deformation y. We find a suitable linear combination of these three 
independent solutions, so that for a specified lower fluid depth D, Reynolds number 
&, and wavenumber k, the conditions of stress continuity at Y = 0 are satisfied, and 
the complex eigenvalue c is obtained. When we equate the densities and viscosities of 
the two fluids, the numerical scheme yields exactly the eigenvalues found by Hall et 
al. (1984). When the imaginary part of the eigenvalue c is zero, there is no temporal 
growth or decay of the disturbance to the basic state, and the flow is neutrally stable. 
We then iterate to obtain neutral disturbances characterized by ci = 0. Figure 3 shows 
four neutral curves: an impermeable plate with K = 0; wall blowing with K = 0.137 
and K = 0.4; and with suction K = -0.1. Inside the curves, c has a positive imaginary 
part and the perturbations ( U j ,  Vj ,  Wj, q )  grow exponentially in time. 

The eigenvectors given in figure 4(a-c) have been normalized so that the maximum 
magnitude of each velocity component is unity. Figure 4(a) shows both real and 
imaginary parts of the three velocity components when the fluid viscosities and 
densities are equal. It has been verified that these (and other) eigenvectors are the 
same as those published by Hall et al. (1984). In figures 4(b,c) we clearly see the 
discontinuities in the velocity and shear stress at the unperturbed interface position 
Y = 0 which is due to the difference in viscosities and densities of the air and water 
layers. It is this discontinuity that plays an important role in altering the stability of 
the flow. The neutral curves for air flow over water are drawn in the (k,&)-plane. 
Figures 5(a) and 5(b) correspond to cases of wall blowing and suction respectively. 
These results are discussed in the following section. 

3.2. Discussion 

Before we discuss the novel results of our numerical calculations we first comment 
on the relevance of the exact solution to the actual flow which forms on swept wings 
and swept cylinders. The boundary layer flow over a yawed, infinitely long cylinder 
was investigated and by Sears (1948), (and in the unpublished work of Schubart). 
Their work is discussed in Chapter VIII of Rosenhead (1963). Using Cartesian 
coordinates, the velocity components are expanded in powers of x / l ,  where x is the 
distance measured along the surface perpendicular to the cylinder generators and 1 
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FIGURE 3. Neutral curves with equal viscosities and densities: impermeable plate K = 0, blowing 
with K = 0.137 and K = 0.4, and suction with K = -0.1. 

is an appropriate length-scale. Close to the leading edge of the cylinder, and for a 
sufficiently large radius of curvature, the effects of curvature can be assumed negligible. 
The leading-order solution (higher powers of x / l  are ignored) reduces identically to 
the flow that we have calculated in 92. The accuracy of this approximation depends, 
therefore, on the geometry of the cylinder or swept wing. Results using this model 
will be most relevant to wing sections which have a flat nose. 

Since the basic flow is only a first approximation to the flow near the attachment 
line, asymptotic methods based on a high-Reynolds-number assumption must be used 
to investigate the practical problem. In addition, the two-fluid flow studied here is 
not an exact representation of the actual effects of heavy rain on the leading edge of 
a swept wing. A more applicable model would need to incorporate a more realistic 
mechanism by which rain can enter the boundary layer. In addition our model restricts 
our study to a situation in which a constant depth of water is sustained in the base 
flow. In practice this may only occur over a relatively short period of time. However, 
this analysis does highlight the potential effects of interfacial instability which may be 
a contributory factor in the overall deterioration in flight characteristics experienced 
in adverse weather conditions. 

It is worth making a few comments about the dimensional quantities in this 
problem. The velocity components in each fluid are made dimensionless using the 
spanwise free-stream speed WO. The length scale A = (p11/U0p1)~/*  is based on the 
streamwise velocity Uo and length 1. In a practical situation then, the density and 
viscosity of the water and air would be fixed parameters (given in table l), as would 
the normal velocity at the surface, VO. We have shown in the previous section that 
with a given value of rc (the dimensionless parameter quantifying the amount of 
blowing or suction) we can calculate the corresponding non-dimensional depth of 
water D. The actual height of the interface is therefore not a free parameter and is 
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N k Re { k c }  K 

10 3.300581 x lo-' 1.226919 x lo-' 0.0 
20 3.378719 x lo-' 1.267951 x lo-' 0.0 
40 3.384238 x lo-' 1.270776 x lo-' 0.0 
80 3.384613 x lo-' 1.270965 x lo-' 0.0 
160 3.384638 x lo-' 1.270977 x lo-' 0.0 
10 8.540221 x lop2 2.284554 x 0.4 
20 8.428938 x lo-' 2.243776 x lo-* 0.4 
40 8.415787 x lo-' 2.238444 x lop2 0.4 
80 8.414404 x lo-* 2.237832 x lo-' 0.4 
160 8.414255 x lo-* 2.237762 x lo-' 0.4 
320 8.414239 x lop2 2.237753 x lop2 0.4 

TABLE 2. Neutral eigenvalues with decreasing step size: rn = 1, p = 1 and R, = 800. 

determined by the dimensional speeds UO, V,, WO so that A is known and hence the 
depth d = D / A  can be deduced. 

The results of our linear stability analysis are in excellent agreement with those 
of Hall et al. (1984) when the fluid properties are matched across the interface (see 
figures 3 and 4). For a given wavenumber k ,  we calculate the Reynolds number which 
gives neutral stability. In the absence of suction or blowing, our numerical scheme 
yields the critical values (R& = 583.14, k,  = 0.2881 in agreement with Hall et al. 
For R, < (&), disturbances are damped and decay to zero exponentially in time. At 
points inside the neutral curve, the boundary layer is susceptible to travelling wave 
instabilities which propagate along the attachment line. 

An additional check on the numerical results is given by halving the step size used 
in the finite difference calculations. Table 2 illustrates the accuracy of the scheme as 
the number of mesh points is doubled. 
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For a single fluid (corresponding to the case when the fluid properties are matched), 
suction and blowing have opposite effects on the flow stability. As IC(> 0) is increased, 
the critical Reynolds number decreases, and the flow is linearly destabilized by a 
smaller crossflow velocity. See for example, the neutral curves in figure 3 with 
IC = 0.137 and IC = 0.4, and the results given by Hall et al. (1984). Suction, however, 
can be a useful laminar flow control. The stabilization induced by negative normal 
velocity at the surface increases the critical Reynolds number, as illustrated by the 
representative case IC = -0.1 in figure 3. We have also calculated neutral stability 
results for other values of IC (namely IC = -0.15,-0.2,-0.25). In each of these 
cases the flow is stable over the range 0 < Re < 1500 illustrated in figure 3. The 
asymptotic results of Hall et al. show that as IC + -00, (&), can be made arbitrarily 
large. This however, does not take into account the effects of nonlinearity. Hall 
& Malik (1986) showed that solutions bifurcate subcritically from the upper branch 
of the neutral curve. The linearly stabilizing role of suction may therefore be 
destroyed by nonlinearity and transition may be enhanced by the unstable nonlinear 
modes. 

Upon introducing a viscosity and density difference across the interface, the results 
of the linear stability analysis are significantly altered. For the flow of air over water 
(the fluid properties are given in table l), we have obtained results in the cases of 
both blowing and suction at the wall. With a positive normal velocity at the porous 
plate, we have chosen the representative cases: IC = 0.027, IC = 0.04, and K = 0.137. 
These neutral curves are illustrated in figure 5(a). To emphasize the interfacial effect, 
we have also included the curve (broken line) corresponding to the neutral stability 
of a single fluid (see figure 3). These eigenvalues were calculated by following the 
results given by fluids with matched physical properties, and gradually introducing 
viscosity and density stratification across the interface. As rn and p increase, the 
interfacial mode destabilizes the flow. For any given Reynolds number, the band of 
unstable wavelengths is significantly increased. The upper and lower branches of the 
neutral curve open out and the critical Reynolds number decreases. For example, with 
JC = 0.137 and D = 6.0, we obtain critical values k,  = 0.499 and (&), = 97.81, whereas 
for matched fluids the critical values corresponding to JC = 0.137 are k,  = 0.309 and 

With suction at the wall, the viscosity and density stratification across the interface 
also leads to destabilization and the flow is again unstable for a wider band of 
wavenumbers. In figure 5(b) we show neutral curves for the cases IC = -0.1026 and 
IC = -0.208 which correspond to water depths D = 1.0 and D = 0.5 respectively 
(see figure 2a). With a non-dimensional water depth of 1.0, the flow is unstable 
even for small Reynolds numbers. Accurate numerical experiments yield critical 
values (&& = 10.9887, k,  = 0.7946. When the depth of the water layer is reduced 
(and consequently the suction parameter is increased) the critical Reynolds number 
increases along with the corresponding wavenumber. For example, with D = 0.5, we 
obtain (&)e = 82.0096, k,  = 1.4410. It is clear then that the usual stabilizing effect 
of suction at the plate has been negated by the strongly destabilizing influence of the 
viscosity and density discontinuities at the interface. 

A comparison between the theoretical and experimental results is difficult. As 
discussed earlier, in-flight calculations and wind tunnel experiments indicate that a 
water layer on the wing surface can have a detrimental effect on drag and lift. This 
is most likely due to the premature transition from laminar to turbulent flow. The 
interfacial travelling wave instability observed here is a possible contributing factor in 
this process. However, experimental investigations into the instability of superposed 

( I Q c  = 315.12. 
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fluids have had limited success in quantifying the interfacial mode. Charles & Lilleleht 
(1965) and Kao & Park (1972) studied the plane Poiseuille flow of oil and water in 
a channel. They found instability at large Reynolds numbers which appears to arise 
in the water layer and causes the interface to become wavy. It is not clear that 
this instability is caused by the interfacial effects; it is more likely that the presence 
of unstable Tollmien-Schlichting waves in the less-viscous fluid (water) are being 
observed at the interface. This mode is present at high Reynolds numbers in the 
absence of a second fluid and is perhaps the one observed experimentally because it 
has the largest growth rate. More successful experimental results have been obtained 
for two-fluid flows in cylindrical geometries, where travelling waves are often observed 
at the interface. The books by Joseph & Renardy (1993) give a good review of recent 
experimental and theoretical investigations. 

The flow described here is a crude model of the actual flow of air over water on 
swept wings. To make qualitative comparisons between the theoretical calculations 
and observable phenomenon would require a more sophisticated model in which 
nonlinear effects are taken into account. The methods adopted by Hall & Malik 
(1986) could be applied to the two-fluid problem in an analogous manner, although 
the nonlinear interfacial conditions would complicate the analysis. In addition, global 
methods could be used to calculate the complete set of eigenvalues, relating the 
interfacial effects with other modes of instability. 

4. Inviscid stationary modes 
We now investigate the stationary instability of two-phase flow of air above water 

over a swept wing, when the Reynolds number is large. As before, we regard the 
flow in each region as a small perturbation to the basic state. The normal coordinate 
must now be scaled on the Reynolds number, so that the fluid velocity and pressure 
are 

After substituting (20) and (21) into the non-dimensional Navier-Stokes equations 
and taking 6 + 0, we recover the ordinary differential system (6)-(7) and boundary 
conditions (8)-(12) which determine the basic state. At next order the equations 
governing the linearized stability of the lower fluid layer are 

- a ( x 2 6 2 )  - a e 2  - a n 2  - a 6 ,  iaF2 
u2 a x  

a z  a y  

+XV2- +XR,'I2V2- +XW2- + -- = -V2 (Xe2) , (22a) a y  a y  a z  p a x  R, - - 
(22b) 

(22c) 

- av, - av, - a v ,  - aF2 d I 2 a F 2  - xu2- + v2- + v2-- + w2- + ~- = -v2v,, 

- aw,  - a w 2  - a W 2  - a w 2  iaF, v - + w2- + -- = -v2w 2 ,  a z  p a z  R, 
xu2- + v2- + R,"'V,- a x  a y  a y  

- a 6 ,  aV2 a w 2  
a z  a x  

- a y  aY - a x  - 

- 
+--0, U2 + - + R,'12= 
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The corresponding equations for the upper layer are obtained by replacing p and v 
by unity in the above equations. 

Following the inviscid instability theory of Gregory et al. (1953) we expect the 
perturbations to the velocity, pressure and interface to have the following modal 
expansions, with wavelengths scaled on the boundary layer thickness : 

( X U j ,  V j ,  Wj = X U j ,  V j ,  W j )  ( Y )  exp iR,'l2 adX + pZ , (23a) - - - )  ( ( [Ix I) 
( q , F j )  = (q ,P j )  (Y)exp (23b) 

In particular we consider a flow which is neutrally stable so that the wavenumbers a 

and p are real. As + -+ 00, an inviscid zone will develop with depth 0 ( %1/2). This 
inviscid region is asymptotically matched onto a viscous wall layer so that the no-slip 
conditions can be satisfied at Y = -D. By balancing inertial and viscous terms in 

equations (22a-4, we see that this viscous layer has thickness 0 %-2/3 . The inviscid 
perturbations Uj, Vj,  W j  and Pi and wavenumbers a and p are then expanded in 

powers of o (%-'I6) : 

0 

Uj = Ujo + RF'/6Ujl + ' . . , 
V, = Vjo + RL1'6Vj1 + . . * , 

Wj= W ~ O + R F ' / ~ W ~ ~ + . . . ,  

Pj = Pjo + RL'/6Pjl + . * * , 
a = ~ 1 0  + RT'/6a1 + * * * , 
p = P o  + RL1/6P1 + . . . . 

Substitution of the neutral disturbances (23a, b) into equations ( 2 2 4  yields the 
following leading-order system of equations which govern the inviscid stability of per- 
turbations to the upper and lower fluids when the Reynolds number is asymptotically 
large: 

- iaoPjo ixujujo + XVj0U> = --, 
P 

Eliminating Ujo, Wjo and Pjo from equations (24a-e) we see that Vjo satisfies Rayleigh's 
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equation, in each layer as follows: 

Here El is the ‘equivalent’ two-dimensional velocity profile, and = a; + pi  is the 
‘effective’ wavenumber. Note that the continuity of stresses at the interface is satisfied 
trivially in the limit as & -, co. The inviscid solution 1/20 is matched onto the 
viscous perturbation in the wall layer, and in view of the continuity equation (224 
this perturbation is 0 &- 

The point at which zj = 0 is denoted by Y = Yo, and as Y approaches this value, 

UO and WO behave like 1 /  ( Y  - YO). By careful choice of ao/Po, cy is also made to 
vanish as Y + YO, so that VO has no such singularity, and a classical critical layer 
analysis is not necessary (see Hall 1986). 

, hence 1/20 satisfies the boundary condition (25d). ( 

4.1. Asymptotic solution for  similar fluids 

The above system may be solved numerically; to do this a suitable initial guess must 
be made for the eigenvalue yo. To assist the location of this eigenvalue, we first 
consider the analogous problem where the two fluids have equal densities, and the 
viscosity ratio is close to unity, that is m = 1 + E ,  where E << 1. This case corresponds 
to the flow of two fluids with similar properties; this is a useful indication of the 
manner in which the interfacial effects can alter the stability of the flow. 

The basic flow and wavenumbers are then expanded in an asymptotic series as 

a0 = a(Hl + fa01 + . . . , P o  = Po0 + €Po1 + . . . , 
Yo = Yo0 + €Yo1 + . . . , a O O M O l  + POOP01 

uj = ujo + €Ujl + . . . , “ j  = FjO + €Vj1 + . . . , 
wj = wj, + fwjl + . . . , uj = uj, + EUjl + . . . , 
ujo = aooxqo + poowjo, 

Ujl = ~ ~ X V j l  + po0Wjl + ao1xDjo + PolWjo- 

Yo1 = 7 

Yo0 - - 

- _  - - - 

- 

- 

The leading-order basic flow in each layer j = 1,2 satisfies 

-I11 - -11 I I  - - v .  10 = I/. 10 v. 10 - (v;o)2 + 1, wjo = vjow;o, 
- -I 

VlO(co) = -1, WlO(co) = 1, 

1/20 (4) = Ic, Vzo (4) = 0, w20 (4) = 0, 
- -I - 

-I -11 - 
with V j ,  V j ,  V j ,  W j ,  and r;, continuous at Y = 0. 
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At O ( E ) ,  

--Iff -I --I --Iff --I --I 

1/11 = vlov;, - 2V10V11 + vllv;o, 1/21 = F20v;1 - 21/20V21 + v21v;, - v;,, 
wyl = vlow;l +vllw;o, wil = 1/20w;1 + v11 w,, - w;o, I -  - - _ _  _ -  

- --I --I - 
Vl1 (co) = 0, w11 (co) = 0, v,, (4) = 0, W21(-D) = 0, 

Vll(0)  = 0 = V21(0) 3 1/11 (0) = v;l(o) , 
1/11(0) = v;l (0) + Ti, (0) , 

Wll(0) = W21(0) 2 w;l(o) = w;, (0) + K O  (0 ) .  

--I - 

--I1 

- 

To solve the above equations numerically, we require the asymptotic form of the 0 ( E )  

correction to the basic flow as Y + 00. This is obtained in a manner similar to the 
derivation of equations (13a-c). We find that 

- 
1/11 = 71 + r1x  - z1rox-I, 

~ 1 1  = - 1 1  - + C  +zl& exp(-+c2), 

where zl, rl and A1 are constants to be found. The equations governing the basic 
state were then solved numerically and the results compared with the solution of 
equations (6)-(7), choosing a value of m close to unity. The results we obtained gave 
excellent agreement up to o (6'). 

The solution of (25) may be obtained by solving the adjoint set of equations (see 
Coddington & Levinson 1955). We recollect that if M is an ordinary differential 
operator over a region N ,  the adjoint problem is defined by 

L P M ( @ ) d y = L @ M + ( ! P ) d y = O .  

In our case the region N = [-D,co), contains two sub-regions [-D,O] and [O,co). 
This, however, does not present a difficulty: following the work of Blennerhassett 
(1980) we define a vector 

( ( i  ) 
- 

z =  { z1, O<Y<GO, 

s = { s1, O < Y < c o ,  

2 2  , - D < Y  GO, 

and a 2 x 2 real matrix S such that 

s2, - D < Y < O .  

For upper and lower fluids ( j  = 1,2 respectively), Z j  and S j  are then chosen such 
that 
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Equations (25a,b) may then be written in vector form Z’ = SZ,  where Vj0 satisfies 
no-slip at the boundaries and Z is continuous across the interface. The adjoint 
problem is now defined by 

( z + ) ~  [z’-sz]~Y = [(z+)’z]“ -D -JWzT -D [ ( z + ) ’ + s T z + ] d Y  =o.  c 
Writing S+ = -ST  the adjoint system becomes 

(z+)’ = s+z+, 
where the adjoint function Z+ is also continuous across the interface, and V$ satisfies 
no-slip at the boundaries. The problem is self-adjoint. 

We now perturb the viscosity ratio about m = 1, and write 

vj, = vj, + evj01 + . * . , 
sj = s j o  + esj1 + . . . , 
zj = zjo + ezj1 + . . * . 

Substitiution into the Rayleigh equations in each fluid layer yields 

z.  - Jo - 

zj, = 

s j o  = 

Sjl = 

0 

2YooY 10 

Neglecting terms of 0 (e2) ,  it follows that the momentum equations are 

O(1) : Zb - sozo = 0, 
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O ( E )  : 2; - s o 2 1  = SIZO. (27) 

Vectors 20 and Z1 remain continuous across the interface and Vim and Viol satisfy 
the no-slip conditions at Y = -D and as Y + co. For equation (27) to have a 
solution, the forcing term on the right-hand side must be orthogonal to the adjoint 
function, hence 

After some manipulation we obtain 

The integrands of Il and I 2  are regular since the singularity at Y = YO is removable, 
for details see Coward (1994). We are now able to calculate yol, the 0 ( e )  correction 
to the effective wavenumber, by finding a numerical solution to the leading-order 
momentum equations (26) and the solvability condition (28a). 

4.2. Discussion 
The Rayleigh equations (25a, b) and associated boundary and interface conditions 
(25-f) describe the inviscid stationary modes of the two-phase flow with general 
viscosity ratio m and density ratio p. These equations were integrated using a 
standard finite difference method so that for given rn and p the eigenvalue yo was 
calculated to a high degree of accuracy. 

Figure 6 illustrates the dependence of yo2 upon the lower to upper fluid viscosity 
ratio for 0.8 < m < 24. The eigenvalue is a strictly increasing function for m > 0. 
The effect of density stratification is more subtle, since it does not appear explicitly 
in equations (25a-f), but manifests itself through the calculation of the basic flow. 

In the absence of a discontinuity in viscosity across the interface, the wavenumber 
of the inviscid stationary mode is 

= ?i0 = 1.4899. 

Using the asymptotic methods for rn- 1 << 1, we obtain the leading-order correction 
to yo due to a small viscosity difference across the interface. The solvability condition 
(28a) represents two simultaneous equations to determine unknowns a01 and Pol 

(taking real and imaginary parts of (28~)).  However, it is more useful to evaluate 

aooa01 + POOP01 
Yo1 = 

YO0 
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FIGURE 6. Eigenvalues yo as a function of viscosity ratio m. 

We find that 

Yo2 = Yo20 + 2EYOOY01 + 0 (6’) , 
= 1.4899 + 0.17266 + 0 (6’) . 

Figure 7 shows the value of evaluated using the numerical scheme for m close 
to unity. The broken line represents the calculation of y io  + 2 (rn - 1) y ~ ~ y o ~  by the 
asymptotic methods described above. 

The eigenvectors illustrated in figures 8(a) and 8(b) have been normalized so that 
their maximum values are 1.0. Figure 8(a) shows vlo and v2, when the two fluids are 
identical. We notice that the maximum velocity perturbation is at Y = 0.0839. Figure 
8(b), however, corresponds to the case m = 5. Although the velocity perturbation 
is still continuous, a discontinuity in the first derivative at the unperturbed interface 
position has developed due to the equation of tangential stress continuity. The 
maximum of F1o now occurs much further away from the interface, at Y = 1.341. 

The orientation of the disturbances relative to the streamwize axis is determined 
by the wave angle @ such that 

No - moo ~ O l P O o  - .ooPo1 + (€2) + - - -  
Po Po0 %I 

, 

= 0.7514 + 37.886 + 0 (E’)  , 
= tan [ i n  - @] . 

For matched fluid properties the effective wavenumber and wave angle given above 
correspond to the single-fluid case. As viscosity stratification is introduced, we obtain 
the above corrections to these quantities and these in turn are in agreement with 
our numerical results for general viscosity and density ratios. These calculations are 
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FIGURE 7. Eigenvalue yo for similar fluids: a comparison of asymptotic and numerical results when 
the viscosity ratio m is close to unity. 
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FIGURE 8. Eigenfunction: (a) equal densities and viscosities; (b)  equal densities, viscosity ratio 

m = 5.0. 

based on an infinite-Reynolds-number assumption. This work could be extended to 
include viscous effects in an analogous manner to the method used by Hall (1986) for 

the flow over a rotating disk. Viscous effects enter at 0 & ; the corresponding 
momentum equations must then be solved to determine Ujl,  Vjl ,  Wjl,.  . . , and the 
solutions matched onto the inviscid flow. The analysis is, however, made more 
difficult due to the complicated interfacial conditions which match the flow across the 
two regions. 

( 

5. Conclusions 
In 993 and 4 we have considered both two- and three-dimensional disturbances to 

the flow of air over water. The exact solution of the Navier-Stokes equations described 
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in 52 is a crude model of the flow near the leading edge of a swept wing during heavy 
rainfall. We have shown that the interfacial forces have a significant effect on the 
stability of the attachment-line flow. Viscous travelling waves are predicted at lower 
Reynolds numbers than is the case for air flow in the absence of a second fluid. The 
instability is due to the discontinuity in the viscosity and density across the interface 
between the two fluid regions and occurs with either blowing or suction at the plate. 

At infinitely large Reynolds numbers, the interface also alters the neutral stability 
of stationary modes of the form considered by Gregory et al. (1953). The three- 
dimensional basic flow is written in terms of an ‘equivalent’ two-dimensional velocity 
profile which has an inflection point when the velocity is zero. Consequently the critical 
layer is passive and the ensuing calculations of the eigenvalues and eigenvectors for 
three-dimensional disturbances follow in a straightforward manner. Using both 
general numerical methods and asymptotic techniques for the flow of similar fluids 
we have obtained the corrections to the disturbance wavenumber and orientation due 
to interfacial effects. 
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